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Projection
❑ In general, projections transform points in a coordinate system of dimension n

into points in a coordinate system of dimension less than n.

❑ We shall limit ourselves to the projection from 3D to 2D.

❑ In computer graphics
▪ Map viewing coordinates to 2D screen coordinates

❑ We will deal with planar geometric projections where:
▪ The projection is onto a plane rather than a curved surface

▪ The projectors are straight lines rather than curves
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Projections – key terms

❑ The projection of a 3D object is defined by straight projection rays (called projectors) 
emanating from a center of projection, passing through each point of the object, and 
intersecting a projection plane to form the projection. 
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Subclasses of planar geometric projections

Planner Geometric Projections taxonomy
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Planer Projection – Major Types

❑ Key factor is the center of projection, COP. 
▪ if distance to center of projection is finite : Perspective

▪ if infinite : Parallel -> so needs direction of projection vector, DOP
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Parallel projection - Types
❑ Orthographic projection

▪ the projection is perpendicular to the view 
plane

❑ Oblique projection
▪ The projectors are inclined with respect to the 

view plane



Parallel projection - Types
❑ 2 principle types: 

▪ on the basis of DOP, V and projection plane normal N)

❑ Orthographic : 
▪ V and N are the same or the reverse of each other, i.e. 

V is perpendicular to view plane

❑ Oblique : 

▪ direction of projection != the projection plane 
normal.
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Orthographic Projection

❑  DOP or all Projectors are orthogonal (perpendicular) to projection surface
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Multiview Orthographic Projection

❑ Projection plane parallel to principal plane

❑ Usually form front, top, side views

Angel: Interactive Computer Graphics 3E © Addison-
Wesley 2002
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Multiview Orthographic projection
❑ Orthographic (or orthogonal) projections: 

▪ front elevation, top-elevation and side-elevation. 
▪ all have projection plane perpendicular to a principle axes. 

❑ Useful because angle and distance measurements can be made...

❑ However, As only one face of an object is shown, it can be hard to create a mental image of 
the object, even when several view are available
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Axonometric projection

❑ A type of parallel projection
▪ Uses projection planes that are not normal to any 

principal axis. 

❑ On the basis of projection plane normal N = (dx, dy, 
dz) subclasses are:

o Isometric : | dx | = | dy | = | dz | i.e. 
  N makes equal angles with all principal axes.

o Dimetric : | dx | = | dy |

o Trimetric : | dx | != | dy | != | dz |
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Axonometric projection
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Oblique Projection
❑ Arbitrary relationship between projectors and projection plane
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Oblique parallel projection

❑ Objects can be visualized better than orthographic projections

❑ Can measure distances, but not angles
▪ Can only measure angles for faces of 

     objects parallel to the plane

❑ Two types
▪ Cavalier and Cabinet
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Oblique Projections
❑ Azimuth,  : is the angle the projection makes with x-axis    

❑ Elevation,  : angle between view plane and direction of projection

❑ l  : original length of a line perpendicular to view plane

❑ l : projected length of a line perpendicular to view plane
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Oblique parallel projection
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❑ Cavalier:
▪ l´ = l ; β = 45° 

▪ The DOP makes a 45 degree angle with the projection plane. 

▪ There is no foreshortening

o Length of any line perpendicular to view plane is l

o The Length of projected line is also l



Oblique parallel projection
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❑ Cabinet:
▪ l´ = l/2 ; β = 63.4°

▪ The DOP makes a 63.4 degree angle with the projection 
plane. 

▪ This results in foreshortening of the z axis, and provides a 
more “realistic” view



Subclasses of planar geometric projections

Planner Geometric Projections taxonomy
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Perspective Projection

❑ Map points onto “view plane” along “projectors” emanating from “center of 
projection”(cop) 

❑ Projectors converge at COP
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Vanishing Points
❑ Parallel lines (not parallel to the projection plan) on the object converge at a single point in 

the projection (the vanishing point) 

❑ Drawing simple perspectives by hand uses these vanishing point(s)
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Perspective Projection - types

❑ Based on vanishing points 

❑ If a set of lines are parallel to one of the three axes, the vanishing point is 
called an axis vanishing point (Principal Vanishing Point). 

❑ There are at most 3 such points, corresponding to the number of axes cut by 
the projection plane

❑ One-point / two-point / three-point perspective:
▪ One / two / three principle axis cut by projection plane
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Perspective Projection

❑ One point perspective projection of a cube
▪ X and Y parallel lines do not converge
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Perspective Projection

❑ Two-point perspective:
▪ often used in architectural, engineering and industrial design drawings. 
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Perspective Projection

❑ Three-Point Perspective
▪ Three-point is used less frequently as it adds little 

extra realism to that offered by two-point perspective 
projection.

▪ No principal face parallel to projection plane
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Perspective Projection-Anomalies

❑ Enhances realism in terms of depth cue but distorts sizes and shapes

❑ Perspective foreshortening The farther an object is from COP the smaller it 
appears
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Perspective Projection-Anomalies

❑ Vanishing Points: Any set of parallel lines not parallel to view plane (or not 
perpendicular to view plane normal) appear to meet at some point.
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Perspective Projection-Anomalies

❑ View Confusion: Objects behind the center of projection are projected upside 
down and backward onto the view-plane.
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Perspective Projection-Anomalies

❑ Topological distortion: A line segment joining a point which lies in front of the 
viewer to a point in back of the viewer is projected to a broken line of infinite 
extent.
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Axonometric vs Perspective
❑ Axonometric projection shows several faces of an object at once like perspective 

projection.

❑ But the foreshortening is uniform rather than being related to the distance from the COP.

Prof. Dr. SMM Ahsan, CSE, KUET 48

y

z

x

Projection Plane

Isometric proj



Projection Mathematics
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❑ Projection plane, COP, etc. all are defined in VCS
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Mathematics for Perspective Projection
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❑ From triangle ABC and A’B’C

≡ 𝑥, 𝑦, 𝑧, − Τ𝑧 𝑑

Some text book 
doesn’t use the minus 
sign here, both are 
OK. So, be careful 
which convention you 
are using
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Matrices for Projective Trans.

Prof. Dr. SMM Ahsan, CSE, KUET 53



Matrices for Projective Trans.
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Perspective Projection Matrix
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Reln with VCS and projection
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Perspective Projection – arbitrary plane

KnJnInN 321 ++=
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Perspective Projection – arbitrary plane
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Perspective Projection – arbitrary plane





































=



















++

=

























=

10

000

000

000

.

.

.

1

     .                                            

321

0

0

0

321

0

0

0

, 0

z

y

x

nnn

d

d

d

znynxn

zd

yd

xd

z

y

x

PPerP RN

Prof. Dr. SMM Ahsan, CSE, KUET 59



Perspective Projection

KnJnInN 321 ++=
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Perspective Projection
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x' = α(x-a) + a;    y' = α(y-b) + b;    z' = α(z-c) + c

n1x' + n2y' + n3z‘ = d0

d = (n1x0 + n2y0 + n3z0) – (n1a + n2b + n3c) 

   = d0 – d1
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N = n1I + n2J + n3K

R0=x0 ,y0, z0

C (a,b,c)

n1(x’ - x0) + n2(y’ - y0) + n3(z’ - z0) = 0 



Perspective Projection - DIY
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❑ Follow the steps –
▪ Translate so that C lies at the 

origin, hence, 

▪ Per

▪ Translate back

R0=(x0 - a, y0 - b, z0 – c)

1 0 0 𝑎
0 1 0 𝑏
0 0 1 𝑐
0 0 0 1

𝑑 0 0 0
0 𝑑 0 0
0 0 𝑑 0
𝑛1 𝑛2 𝑛3 0

1 0 0 −𝑎
0 1 0 −𝑏
0 0 1 −𝑐
0 0 0 1

d = (n1x0 + n2y0 + n3z0) – (n1a + n2b + n3c) 

   = d0 – d1



Finding Vanishing Point

❑ Find (a) the vanishing points for a given perspective transformation in the 
direction given by a vector U,  (b) principal vanishing point.

❑ Family of parallel lines having the direction U(u1,u2,u3) can be written in 
parametric form as 
▪ x = u1t+p,  y = u2t+q,  z = u3t+r

▪ here P(p, q, r) is any point on the line

❑ Let, proj(x,y,z,1) = (x‘, y‘, z‘, h)
▪ x' = (d+an1)(u1t+p) + an2(u2t+q) + an3(u3t+r) – ad0

▪ y' = bn1(u1t+p) + (d+bn2)(u2t+q) + bn3(u3t+r) – bd0

▪ z' = cn1(u1t+p) + cn2(u2t+q) + (d+cn3)(u3t+r) – cd0

▪ h = n1(u1t+p) + n2(u2t+q) + n3(u3t+r) – d1
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Parallel projection on xy plane with DOP V = aI + bJ + cK

 and P P has same direction, 

     so  P P

Comparing components

        

V

kV

x x ka y y kb z z kc
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  − = − = − =

Prof. Dr. SMM Ahsan, CSE, KUET 66

X

y

P(x,y,z)

P’(x’,y’,0)

V=aI+bJ+cK

Z

Since, projection on xy plane, 0

So,         

z

z a b
k x x z y y z

c c c

 =

 = = − = −







































−

−

=





















−

−

=

























•=

11000

0000

010

001

1

0

1

P        Par                     P       So, V

z

y

x

c
b

c
a

z
c

by

z
c

ax

z

y

x



Derive eq of parallel projection with DOP V = aI + bJ + cK on plane with plane normal N, passing 
through P0
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P(x,y,z)

N

V=aI+bJ+cK

X

y

Z

Do by yourself

Hint: 

•Align the plane with xy plane

•Adjust the DOP

•Do the projection

•Do the reverse actions



Math of Oblique Projection

sinfl
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cosflx +

O(0,0,0)

α
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l

fl
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X
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y

Given
• Azimuth and foreshortening factor



Solution

0

sinsin

coscos

=

+=+=
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z
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Parallel projection

❑ Cavalier, cabinet and  orthographic projections can all be specified in terms of 
(α, β) or (α, f) since 
▪ tan(β) = 1/f
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α

β

P=(0, 0, 1)

P׳(λ cos(α), λ sin(α),0) 

λ cos(α)

λ sin(α)

f



Parallel projection

=1  = 45 Cavalier projection  = 0 - 360

=0.5  = 63.4 Cabinet projection  = 0 – 360

=0  = 90 Orthogonal projection  = 0 – 360
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Problems

❑ Schaums Series
▪ 7.2

▪ 7.6

▪ A2.14
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